音波と光干渉を用いた表層欠陥の可視化技術 超音波光探傷装置MAIVIS™(MIV-X)^{*}

児玉 賢治^{*,†}

Visualizing Technology that Utilizes Sonic Waves and Light Interference to Detect Surface Layer Defects *

Kenji Kodama^{*,†}

1. はじめに

近年,多くの産業分野における製造・整備・保守の現場で は競争力を確保するため、より高いレベルの品質管理や生産 性の向上が求められている.また、表面改質分野においても 多様かつ高度な要求に応えるために新たな素材や加工技術が 開発されている.それらに対応する新たな検査方法も必要と され、とりわけ非破壊での検査ニーズが大きい.

本稿では、試料の表面付近(以下,表層)の欠陥を検知す るのに適し、音波の励振とレーザの干渉光とを組み合わせた 新しい非破壊検査技術(音波光干渉イメージング技術,以下 は本技術)について解説する.また、本技術を実装した当社 の超音波光探傷装置(MIV-X)¹⁾を用いた皮膜欠陥に関する 観察事例についても紹介する.

2. 音波光干渉イメージング技術の概要

2.1 概要

試料に連続した音波振動による外的負荷を加え、試料表面

Fig.1 Concept diagram of defect detection by visualization of ultrasonic vibration.

を伝搬する音波による微小な面外変形の状況をレーザ照明と 特殊カメラを用いて光学的に可視化し,音波の伝搬が,表層 の亀裂,剥離,空洞などの箇所で変化する様子を観察するこ とにより欠陥を検知する (Fig.1).

2.2 特長

2.2.1多様な形態の表層欠陥を可視化

試料表面の微小な面外変形を光学的に可視化する特殊カメ ラを用いて、カメラ視野内の広域を一括して計測することが できる.表層欠陥の形態による欠陥箇所での音波の伝搬状況 をFig.2に示す.

(a) 露出した母材亀裂:

亀裂箇所で音波の伝搬に不連続が生じる.

(b)皮膜下の母材亀裂:

皮膜表面に露出していない隠れた亀裂欠陥の場合も,(a) と同様に,内部に母材亀裂がある箇所で音波の伝搬に不 連続が生じる.

(c) 接合不良,表面付近の層間剝離など:

塗膜や溶射皮膜などの浮いた箇所では、表面の音波の伝 搬は正常箇所に比べ、振幅大及び波長短と変化が生じる. 薄板部材間の接合不良、ハニカムサンドイッチ構造部材 や建築物などのタイルの接着剝離、CFRPの層間剝離の場 合も同様である.

表面に対する光学的な観察のため, 試料内部の音響イン ピーダンスやX線透過率などの材料特性を考慮することなく 計測できる点も特長である.

2.2.2 計測結果のデータ化が可能

計測結果を画像データとして記録できるため,検査結果の 妥当性を後で検証することが可能になり信頼性向上に寄与で

* Testing Machines Business Unit, Shimadzu Corporation. (1, Nishinokyo Kuwabara-cho, Nakagyo-ku, Kyoto 604-8511, Japan) † Corresponding author, E-mail : codama@shimadzu.co.jp

[※]原稿受付日 2024年6月10日 ※原稿受付日 2024年6月10日

[※]原稿受理日 2024年6月25日

^{*}株式会社島津製作所 分析計測事業部 試験機ビジネスユニット (〒604-8511 京都市中京区西ノ京桑原町1)

Fig.2 Acoustic wave propagation at defects.

きる. さらに劣化の経時観察や他手法評価との紐づけなどに も活用が可能となる.

2.2.3 検査作業の効率化に寄与

皮膜で覆われた試料に対し、本技術は皮膜下の欠陥を非破 壊で可視化できるため、従来の浸透探傷検査や磁粉探傷検査 にて必要であった皮膜除去や探傷剤塗布/除去、再塗装など の前後工程を大幅に削減することが可能となる.また、試料 の水浸や遮蔽空間への設置の必要もなく、大型の試料、運用・ 竣工済みの現場においても使用できる可能性がある.

2.3 音波光干渉イメージング技術の原理

連続した音波振動により生じる試料表面の空間的・時間的 な変化に伴う微小な面外変形の測定は,近接した2点からの 反射光を干渉させて面外変形の空間分布を画像化するスペッ クル・シアリング干渉法とストロボスコープ技術を組み合わ せて行う.

2.3.1 音波振動による面外変形の測定

スペックル・シアリング干渉法の光学系の基本構成をFig.3

Fig.3 Optical diagram of a speckle shearing interferometer.

に示す. 試料の表面 (粗面) をレーザ光で照明しカメラで撮影 すると、スペックルとよばれるランダムな明暗パターンの光 学画像 (スペックル像)を取得できる. シアリング干渉法では、 カメラ内部の光学系においてビームスプリッタとミラーを用 いて光路を2分割してわずかに横ずらし (シア:shear) した のちに重ね合わせることで、スペックル像の微分干渉像が得 られる. さらに、2分割した光路の長さを位相シフタで相対的 に変化させながら微分干渉像の各画素の輝度変動を計測する ことにより、各画素に投影されている表面の2点から到来す る光の位相差Δφが求められる.

ここで表面に面外変形が生じると、光位相差 $\Delta \phi$ が変化する.変形前後の光位相差 $\Delta \phi$ b、 $\Delta \phi$ aとレーザの波長 λ を用いて、次の関係式より、面外変形による変位のシア方向2点間での空間差分 Δ z1 – Δ z2を算出することができる.

 $(\Delta z1 - \Delta z2) = \lambda (\Delta \phi b - \Delta \phi a) \swarrow 4 \pi$

このように、2分割した光路の長さを位相シフタで相対的に 変化させながら微分干渉像の各画素の輝度変動を計測するこ とにより、面外変形による変位のシア方向2点間での空間差 分の二次元分布を求めることができる.

2.3.2 ストロボスコープによる繰り返し現象の観察

音波振動と同期して繰り返し瞬間点灯するストロボスコー プ技術を用いることでレーザ照明による試料表面の近接2点 からの反射干渉光の光位相変化を測定する.ここで,位相シ フタによる複数の光位相,及び異なる複数の音位相の時刻に おいて測定を繰り返すことで,位相時刻の変化に伴う各点の 変位を求めることができる.

2.3.3 音波伝搬の可視化

当社の超音波光探傷装置 (MIV-X) では,各位相時刻にお ける変位量を輝度に換算し,表面の微小な変位の空間 (二次 元)分布をグレースケールで画像化 (以下,音場画像)する (= 空間的変化の可視化). さらに、位相時刻ごとのグレースケー ル画像を用い動画像を構成することで、音波振動による試料 表面の変位を可視化する(=時間的変化の可視化).この可視 化像から、振動状態が空間的・時間的に不連続な箇所を観測 することで、欠陥部を検知することが可能となる.

また、音波伝搬の不連続(音場変状)箇所を画像処理によ り抽出し、試料の映像画像(カメラ画像)と重畳させたオーバー レイ画像を作成する機能を備える.

2.4 JISの制定

本技術を幅広い産業分野における新たな非破壊評価手法と して活用を促すことで、各種現場での作業の効率化、経費節 減などに繋げることが期待できることから、2024年2月に分 析通則としてJISが制定された²⁾.

3. 観察事例

3.1 使用装置

皮膜欠陥に関する観察に使用した当社の超音波光探傷装置 (MIV-X)の外観をFig.4に, 仕様をTable 1に示す. 装置は, カメラユニット、制御ユニット、振動子ユニット、ノートPC などから構成される. 撮影画像の解像度の制約から検知可能 な欠陥の最小サイズは撮像範囲の大きさによって変化する. また、近接観察向けに光学ズームセットをオプションとして 準備している.なお、レーザ光はクラス1であり、使用にお いて特別な安全対策の措置は不要である.

Fig.4 System configuration of the MIV-X.

Table 1 Main specifications of the MIV-X

項目	仕 様
試 料 母 材	金属, セラミックス, 複合材など
検知サイズ	撮像範囲のおよそ 1/100 [※] 例えば, 撮影距離 250mm で約 Φ1mm [※]
撮 影 距 離	250~1000mm 光学ズームセット使用時 50~200mm
撮 像 範 囲	100×150 mm (撮影距離 250 mm) 200×300 mm (撮影距離 500 mm) 400×600 mm (撮影距離 1000 mm) 光 学ズームセット使用時 28×42 mm (撮影距離 50 mm)
測定時間	25 秒 以下 **
加振周波数	20k ~ 400kHz
レーザ安全性	JIS C 6802, クラス 1

※代表値であり観察対象や撮影条件により異なる

3.2 皮膜下の母材亀裂

母材に模擬亀裂を設け、表面に塗装を模擬したフィルムを 貼付した鋼板試料をFig.5に示す. 鋼板は外径150 mm, 板厚 20 mmであり、厚さ100 µmのポリエステルフィルムを貼付 した. 模擬亀裂は長さ約11 mm, 幅は最大部約60 µm, 深 さ約3 mm である.

観察結果 (a音場画像, bオーバーレイ画像) を Fig.6 に示す. 亀裂部で明瞭に音場変状を確認でき,フィルム (塗装模擬)下 の欠陥部位を可視化できている.

Fig.5 Steel plate sample with prepared crack.

(a) Acoustic wave image

Fig.6 Crack detection images of steel plate sample.

3.3 溶射皮膜の剥離

アルミ製の基材板に、アルミ・ポリエステル・ケイ素を含 有するパウダーをプラズマ溶射した試料をFig.7に示す. 基材 板は長辺100 mm, 短辺75 mmであり, 溶射材の付着を防ぐ ペーストをMIVの文字型に塗布し、文字がほぼ目視できなく なるまで溶射皮膜を施工した. 平均膜厚は0.257 mmであった.

観察結果をFig.8に示すとおり、MIVの文字をかたどった 音場変状が確認できた. くわえて、X線CT装置による断面 の観察結果をFig.9に示す。音場変状箇所において皮膜と基 材間に空間が確認でき、音場変状と剥離箇所の相関が取れた.

Aluminum plate sample with simulated peeling of thermal Fig.7 spray coating.

Fig.9 X-ray CT cross-sectional image of the coating peeling area at three vertical lines of the letter M.

本技術は試料のサイズに制約がなく短時間に溶射皮膜の剥離 箇所を検知できる.

4. まとめ

本稿で紹介した音波光干渉イメージング技術は,従来手法 では困難な検査を補完する可能性を有した新しい非破壊検査 技術になりえると考えている.表層部分の検査に特化してお り,とりわけ溶射加工面は良好なレーザの反射光が得られ観 察対象として適している.これまでに,サーメット溶射した 部品の出荷検査や,セラミック溶射の加工条件探索などにも 採用された実績がある.さらに音波光干渉イメージングの分 析手法はJISとして制定されたことも踏まえ,幅広い分野で の適用に向けた取り組みを進めている.

文 献

- 1) 堀川浩司, 岡本弘文, 田中隆, 杉本賢, 三品尚登, 早川昌志, 畠堀貴秀, 吉田康紀: 超音波と光を利用した表層欠陥を可視 化する非破壊検査装置 超音波光探傷装置 MAIVISTM MIV-500の開発, 島津評論, 75, pp.95-102 (2021)
- 2) JIS Z2411:2024:音波光干渉イメージング分析通則(2024).